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a b s t r a c t

To validate earlier results for the case of arbitrary deformations and displacements in orthogonal curvi-
linear coordinates, kinematic and static relations of the non-linear theory of elasticity are set up which,
in the limit of small deformations, lead, unlike the known relations, to correct and consistent relations.
The same relations are also constructed for momentless shells of general form for the case of arbitrary
displacements and deformations on the basis of which the problem of the static instability of a cylindrical
shell with closed ends, made of a linearly elastic material and under conditions of an internal pressure
(the problem of the inflation of a cylinder), is considered. It is shown that, in the case of momentless
shells, the components of the true sheat stresses are symmetrical, unlike the three-dimensional case. All
the above-mentioned relations are constructed for the loading of deformable bodies both by conservative
external forces of constant directions and, also, by two types of “following” forces.

© 2008 Elsevier Ltd. All rights reserved.

It has been established1,2 that the relations of the geometrically non-linear theory of elasticity for small deformations and arbitrary
displacements constructed by Novozhilov, which are used in all the scientific and educational literature on the mechanics of deformable
solids as being absolutely correct and rigorously substantiated, are incorrect. On account of this, a non-contradictory version of the kinematic
relations has been constructed in the quadratic approximation which, unlike the known relations, are correct, consistent and do not lead
to the appearance of “false” bifurcations in the solution of specific geometrically non-linear problems. Based on these relations, consistent
versions of the geometrically non-linear theory of momentless shells3 of thin shells of general form with moments and of straight rods4

have also been constructed for the case of small deformations and arbitrary displacements which enable one, within the limits of the
corresponding linearized equations, to reveal a number of new non-classical forms of the loss of stability of cylindrical shells3–5 and rods3

in the case of some forms or other of their subcritical stress-strain state.
With the aim of validating the results in Refs 1 and 2 below, in addition to the results obtained by Novozhilov (see Ref.,6 for example),

kinematic and static relations of the non-linear theory of elasticity are set up for the case of arbitrary deformations and displacements
which, in the limit of small deformations lead to correct and consistent relations.

The same relations are also constructed for momentless shells of general form for arbitrary displacements and deformations.

1. Equations of the theory of elasticity for arbitrary displacements

Finite deformations. We will assume that a deformable rigid body, which has a volume V prior to deformation, is referred to an orthogonal
curvilinear system of coordinates x˛ (� = 1,2,3) and is bounded by the surfaces x� = x�−, x� = x�+, which will henceforth be denoted by ˝±

˛ .
Here and everywhere below, the indices �, � and � take the values of 1, 2, 3 and summation from 1 to 3 is carried out over the repeated
index �. We define the position of a certain point of the body M ∈ V with coordinates x˛ by specifying the radius vector R(x˛) which, as
a result of the deformation of the body, gains an increment due to the displacement vector u = u�I�, where I� = R�/|R�| = R�/H� are unit
vectors satisfying the equalities I�I� = ��� (��� is the Kronecker delta and R� = ∂R/∂x�) and for which the differentiation formulae

(1.1)
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hold. After the body has been deformed, the expressions

(1.2)

(1.3)

are obtained, using formula (1.1), for the principal basis vectors R∗
� = ∂(R + u)/∂x�, which enable as to determine the components of the

principal metric tensor using the formulae

According to Novozhilov,6 the quantities

(1.4)

are called the stress components of the deformations. In present-day deformable body mechanics, the quantities7,8

are also taken as a measure of both finite and small deformations in the case of arbitrary displacements.
However, the quantities

(1.5)

where dl� = H�dx�, dl∗� = H�(1 + 2ε��)1/2dx� = H∗
�dx� are elements of the lengths of arcs in the coordinate lines x�, x∗

� before and after
the deformation of the body, are the true6 tensile deformations.

When account is taken of formula (1.5) for the unit vectors I∗�, directed along the tangents to the coordinate lines x�∗ , the relations

(1.6)

are obtained and, by using these to determine of the shear deformations sin ���, the kinematic relations

(1.7)

are established.
Prior to its deformation, we separate out a curvilinear parallelepiped from the body with orthogonal sides dl1, dl2, dl3, and faces x� = const

with areas

and a volume equal to dV = H1H2H3dx1dx2dx3. After deformation of the body, the above-mentioned faces will have areas s∗
1, s∗

2, s∗
3, which

are connected to the areas S1, S2 and S3 by the relations6

(1.8)

In the areas S∗
�, we introduce into the treatment the vectors of the true6 stresses �� = ���I�, divided by the units of the areas S∗

� and the
generalized6 stress vectors �∗

�, divided by the units of the areas S�. They must be related by the equalities6

(1.9)

Inserting expressions (1.6) here instead of I∗� and introducing the notation

(1.10)

we obtain

(1.11)

where, by definition, s∗
�� are the components of the stress vectors �∗

� divided by the units of the areas S� in the projections onto the
undeformed axes.
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The relations

(1.12)

follow from relations (1.5) and (1.7) and, using these, formulae (1.8) can be represented in the form

(1.13)

The notation

has been adopted here.
Since, by definition,6 �∗

�� = �∗
��, then, starting from relations (1.10) and taking account of formulae (1.13), we arrive at the formulae

(1.14)

which are very convenient for analysing the basic relations of the theory of elasticity in the case of small deformations.
The vector equilibrium equation

(1.15)

must be satisfied in the curvilinear system of coordinates in the case of the stress vectors �∗̨ and the vector of the bulk forces F∗ = F∗
� I� ,

divided by the unit of volume dV, prior to deformation of the body, which were introduced into the treatment. The scalar equilibrium
equations in the projections on the undeformed axes

(1.16)

where

(1.17)

follow from (1.15) when representations (1.11) and differentiation formulae (1.1) are used.
If the body has a canonical form and surface forces p∗

� = p∗
�� I� , divided by the units of areas S�, are specified at the points of its

boundary surfaces x˛ = x�+, x� = x�−, then, in a static equilibrium state, the variational equation of the principle of possible displacements
(the summation is from 1 to 3 over the index �)

(1.18)

must be satisfied and, using relations (1.4), this equation becomes

(1.19)

The equilibrium equations (1.16) follow from this and, at the points of the boundary surfaces x± = x±�, static boundary condition of the form

(1.20)

if the forces p∗
�� are specified for constant directions of the vectors p∗

� (“dead” forces9).

If representations of the form p∗
� = q∗

��I∗� are adopted for the vectors p∗
�, in which the components q∗

�� are specified, then these surface
forces will be assumed to be “following” forces of the first type. Using relations (1.6) between p∗

��, occurring in the boundary conditions
(1.20) and between the components q∗

��, the relations

(1.21)

are established. Treatment of the case when “following” surface forces q∗
� of the second type, given by the expansion

(1.22)

where n∗
1 is the unit vector normal to the undeformed face x1 = const, act on the body is also of practical interest. Since the vectors I∗2 and

I∗3 lie in the tangential plane to this face, then, by using relations (1.6), it is possible to obtain

(1.23)
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where

(1.24)

By substituting the expansion p∗
1 = p∗

1� I� and relations (1.6) and (1.23) into representation (1.22), it is possible to establish the equalities

(1.25)

which serve to formulate the static boundary conditions (1.20) in the case of the action of “following” surface loads of the second type.
For the subsequent analysis and simplification of the relations presented above, the treatment of the particular form of deformation

of a body, at all points of which the equalities e�� ≡ 0 (� /= �) are satisfied when F ∗̨ = 0 and, at the same time, �12 = �13 = �23 = 0, is of
fundamental importance. By virtue of these equalities, relations (1.4) take the form 2ε�� = 2e�� = e2

��.
Consequently, according to equalities (1.5), the formulae

(1.26)

are exact in the case of arbitrary deformations and, at the same time,

(1.27)

by virtue of which the equilibrium equations (1.16) take the form

(1.28)

where H∗
� = (1 + ε�)H� = (1 + e��)H� are the Lamé parameters in the undeformed state of the body.

Small deformations. Relations (1.5) cab be represented in the form �� (2 + ��) = 2���, where the approximate kinematic relations

(1.29)

with an accuracy 2 + �� ≈ 2, follow from this in the case of small deformations of the extensions �� � 1 and, with an accuracy 1 + �� ≈ 1,
instead of (1.7) we will have the approximate relations

(1.30)

which hold for arbitrary shear deformations. The simplified formulae

which follow from relations (1.13) and (1.14) with an accuracy 1 + �� ≈ 1, correspond to such a deformed state.
If, together with the assumptions that �� � 1, it is also assumed that the shear angles are small and we put

we arrive at the approximate equalities

(1.31)

which, together with relations (1.29) and (1.30), are well known in the literature and are used as being absolutely correct in the case of small
deformations when, in accordance with the approximate equalities (1.31), there is no practical sense in introducing differences between
the components of the generalized stresses (�∗

��) and the true (���) stresses. However, when they are used in the case when e�� = 0, ��� = 0

(� /= �), the equations

(1.32)

follow from Eq. (1.16) when account is taken of relations (1.17) while the equations

(1.33)

which do not agree with Eq. (1.32), follow in the case of small deformations from Eq. (1.28), which are exact in the case of finite deformations
for the case of a deformed state being considered.
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The reason for this disagreement is simple: if, in the exact formulation of the problem, transformations of the form

(1.34)

hold for the terms in Eq. (1.18) in the limit of a deformed state, which is characterized by the equalities e�� = 0 (� /= �), then, within the
limits of the approximation

the transformations

(1.35)

hold and the use of these also leads to Eq. (1.32).
In order to remove the defect in the approximate relations (1.29) which has been established and in the relations s∗

�� = ���(ı�� + e��)

which are obtained when they are used, it is sufficient to discard terms of the form e2
��/2, in relations (1.29), replacing them with the

approximate relations1,2

(1.36)

The relations for s∗
��(� /= �) then take the form

(1.37)

while the relations for s�� (� /= �) remain unchanged. In the case of small deformations, similar simplifications also have to be carried out
in relations (1.21) by representing them in the form

(1.38)

if following surface forces p∗̨ ≈ p˛ of the first kind act on the body. If, however, following forces of the second kind act, then it is necessary
to represent relations (1.25), which are required in order to formulate the static boundary conditions, in the form

(1.39)

by putting

The relations

(1.40)

following from relations (1.6) and (1.23), which, when e�� = 0(� /= �), like relations (1.6) and (1.23), lead to the exact equalities I∗� = I�, n� =
I�, are also consistent in the case of small deformations.

2. Geometrically non-linear equations of the theory of momentless shells in the case of arbitrary deformations

We refer the space of the shell, which has a thickness t, to the parametrization

where r = r (x1, x2) is the parametric equation of the middle surface �, referred to the lines of principal curvatures, and m is the unit vector
of the normal to � which, with the unit vectors Ii = ri/|ri| = ri/Ai, constitutes a right-handed trihedron at each point of the surface �.
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In the system of coordinates which has been adopted, the differentiation formulae

(2.1)

hold for the vectors Ii, and m, where ki are the principal curvatures of the surface �, the parametric equation of which, after deformation
of the shell, is expressed by the equality

(2.2)

Henceforth, summation from 1 to 2 is carried out over a repeated index k or s.
Differentiating equality (2.2) with respect to xi, using formulae (2.1), at each point M* of the deformed surface �*, by analogy with the

first part of Section 1, we successively find the vectors of the principal basis

(2.3)

the unit vectors

(2.4)

the tensile deformations �i and the shear deformation sin�12

(2.5)

where

(2.6)

(2.7)

By definition, the area of an element of the curvilinear quadrangle on the deformed surface �* is equal to d�∗ = √
a∗dx1dx2, where a∗ =

a∗
11a∗

22 − a∗
12 is the determinant of the metric tensor on �* with components

Consequently,

(2.8)

However, according to equalities (2.5),

Hence,

(2.9)

In normal sections of the deformed shell, corresponding to x1 = const and x2 = const, we have �13 = 0, �23 = 0, for the transverse components
of the shear stresses in the case of momentless shells and �33 = 0 within the limits of the assumption concerning the plane stress state.
Consequently, �13 = �23 = 0, by virtue of which relations (1.4) take the form

(2.10)

It follows from this that not only the components of the generalized stresses but, also, the components of the true stresses are symmetric
in the momentless stress state of a shell, that is, �12 = �21.

We now introduce the vectors of the generalized linear forces T∗
1 and T∗

2, divided by the units of the lengths of the coordinate lines x1

and x2 of the undeformed middle surface �. By definition,

(2.11)

In a similar way, at the points of the deformed surface �*, we introduce the vector of the external surface forces X*, divided by a unit of the
area of the undeformed surface �, which is associated with the analogous vector X, divided by a unit of the area of the deformed surface
�*, by the equality X*d� = Xd�*. Since d� = A1A2dx1dx2, and d�* is defined by to formula (2.9), then

(2.12)
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Using relations (2.10), the expressions for T∗
ij

can be represented in the form

(2.13)

where the forces

which are the components of the vectors Ti = Tikl∗k, have been introduced into the treatment.
By definition, T1 and T2 are vectors, divided by the units of the lengths of the coordinate lines x1∗ , x2∗ of the deformed surface �*. The

relations

(2.14)

must therefore hold between them and the vectors T∗
i .

Substituting their representations

(2.15)

here, instead of Ti, we obtain the representations

(2.16)

for T∗
i when formulae (2.13) are taken into account. The components of the forces S∗

ij
and S∗

i3 occurring here, which are defined by the
formulae

(2.17)

are the projections of the vectors of the forces T∗
1 and T∗

2, divided by the units of the lengths of the coordinate lines x2 and x1, on � in the
directions of the unit vectors li and m on �.

The vectors of the internal forces T∗
i and T∗

2 and the surface loads X* must satisfy the vector equilibrium equation

(2.18)

in the case of static deformation of the shell and the vector equation of motion (� is the time)

(2.19)

in the case of a dynamic deformation process.
If it is assumed that a shell on � is bounded by the contour lines xi = xi−, xi = xi+ and the contour forces P∗

1 and P∗
2, divided by the units

of the lengths of the lines x1 = const and x2 = const, are specified on them, then the internal forces T∗
1 occurring in Eq. (2.18) must satisfy the

static boundary conditions

(2.20)

Together with the vectors P∗
i , the vectors of the given forces Pi, divided by the units of the lengths of the deformed contour lines on �* can

also be introduced into the treatment. They are connected by the relations

(2.21)

which are analogous to relations (2.14). Then, by representing the vectors Pi in the form of the expansions

after introducing the external generalized contour forces Q ∗
ij

into the treatment using the formulae

(2.22)

we arrive at the representations

(2.23)

Here, the projections of the vectors P∗
i on the undeformed axes, divided by the units of the lengths of the corresponding contour lines on

the undeformed middle surface �, have been introduced into the treatment.
If the vector of the surface forces X* is represented by the expansion

(2.24)
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then, when expressions (2.16) and (2.24) are substituted into Eq. (2.18) and the differentiation formulae (2.11) are used, we arrive at the
static equilibrium equations

(2.25)

in projections on the undeformed axes. In these equations, the external surface forces are assumed to be specified, if the vector X* does
not change its direction during the deformation process (a “dead” surface load). The vector X* is assumed to be a “following” vector if its
components are specified in the projections on the unit tangential vectors l∗i and the normal M*:

(2.26)

where

(2.27)

(2.28)

According to representations (2.24) and (2.26), when relations (2.4) and (2.27) between the components X∗
i
, X∗

3 and Y∗
i

, Y∗
3 are used, the

relations

(2.29)

are established in which the components Y∗
1, Y∗

2, Y∗
3 are assumed to be specified. In particular, in the case of the hydrostatic action of an

external pressure p* on a shell, which remains normal to the surface �* during the shell deformation, the external forces in Eq. (2.25) will
have the form

(2.30)

since, for such a load, Y∗
1 = Y∗

2 = 0.
The static boundary conditions for the equilibrium equations on the contour lines xi = xi−, xi = xi+ are formulated as follows:

(2.31)

The values of P∗
ik

and P∗
i3 are assumed to be specified for constant directions of the vectors P∗

i and, under the action of contour “following”
forces of the first type, they are determined using formulae (2.23). If, however, the vectors P∗

i belong to the second type, that is, they are
given by the representations (relation (2.21) are taken into account)

(2.32)

in which the unit vectors

(2.33)

occur, which are normal to the lines x1∗ = x1+, x2∗ = x2+ and lie in the tangential planes to the deformed surface �*, then it is necessary to
consider the components Q1, Q2, Q12, Q21, divided by the units of the lengths of the arcs of the deformed contour lines, as being specified.
In order to express the components P∗

ik
and P∗

i3 occurring in the boundary conditions (2.31) in terms of them, we obtain the expressions

(2.34)

for the vectors n∗
i
, where

(2.35)

Then, on substituting expressions (2.4) and (2.34) into expression (2.32), we arrive at the relations

(2.36)
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which are used to formulate boundary conditions (2.31) when “following” loads of the second type act on the contour lines of the
shell.

As the simplest example of the application of the relations of general form, which have been derived above, we consider the problem of
the stress-strain state of a circular cylindrical shell with closed ends acted upon by an external pressure. Since the stress-strain state of the
shell is axil symmetric for such loading, then, within the limits of the momentless theory when account is taken of the obvious equalities
A1 = 1, A2 = R, we arrive at the absolutely accurate kinematic relations

(2.37)

where u1 and �1 and the displacement and deformation along the axial coordinate x, w is the bending, R is the radius of the middle surface
and �2 is the relative extension in the circumferential direction of the shell. By virtue of the equalities

formulae (2.28) lead to the equalities

and, by virtue of the equality �12 = 0, when they are used taking account of relations (2.37), formulae (2.29) lead to the equalities

where p* is the internal pressure per unit area of � prior to the deformation of the shell. If the pressure, per unit area of �* in the deformation
process is denoted by p, then, by formulae (2.30), for X∗

3, we arrive at the equality (X3 = Y3 = p)

(2.38)

In the case considered, the equilibrium equations (2.25) take the form dS∗
11/dx = 0, S∗

22 = RX∗
3 by virtue of the equalities k1 = 0, k2 = R.

Consequently, S∗
11 = P∗

11. But, by virtue of formulae (2.17), S∗
ii

= T∗
ii
(1 + eii) and, by virtue of formulae (2.23), P∗

11 = Q ∗
11(1 + e11). Hence

(2.39)

When account is taken of relations (2.13) and (2.22), the first equality of (2.39) is transformed into the equality T11 = Q11. By definition,

Consequently,

(2.40)

Here, R* is the radius of the deformed middle surface of the shell.
Similarly, using relations (2.38) and (2.13), the formula

(2.41)

follows from the second equality of (2.39).
If it is assumed that Hooke’s law holds between the deformations and the true normal stresses, then, in the case of a plane stress state

when account is taken of relations (2.37), we have the relations

(2.42)

and when these are used

(2.43)

where Ei are the moduli of elasticity of the first series, vij are Poisson’s ratios and

However, in the case of finite deformations �ii = Tii/[t(1 + �3)]. Consequently,

(2.44)
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Fig. 1.

Substituting formulae (2.40) and (2.41) and relations (2.43) from (2.44), we strain the system of linear algebraic equations

(2.45)

Dividing both sides of the second equation of (2.45) by two and subtracting it from the first equation, we obtain the relation

(2.46)

and, using inequality (2.46) and introducing the dimensionless loading parameter p̃, the first equation is reduced to the quadratic equation

(2.47)

where

The relation

(2.48)

follows from Eq. (2.47). Eq. (2.48) is shown for an isotropic shell on the right in Fig. 1 and the dependence of

on e11 = ge22 is shown on the left-hand side of the same figure. In Fig. 2 we show p̃ as a function of �11, �22, �3, where

It can be seen that the relation p̃ = p̃(e22) as well as the other relations have points at which p̃ attains a maximum. According to relation
(2.48) when dp̃/de22 = 0, for a positive maximum point we obtain

(2.49)

Fig. 2.
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It should be noted that the problem considered above on the deformation of a cylinder under the action of an external pressure is completely
analogous to problems by which the deformation of a rod under tension and the inflation of a sphere under the action of an internal pressure
are described. The solutions found by Rzhanitsin and Feodos’ev are available with an analysis of the corresponding processes.10 By analogy
with them, the fixed value of the pressure p̃max is the critical pressure, after the attainment of which the deformation of the shell become
larger without any further increase in p. Up to the values e∗

ii
and �∗

ii
, the deformation process is stable. If, however, the value of p is maintained

at the level pmax, the descending branches of the graphs shown in Figs. 1 and 2 are unstable.
If, however, gas is pumped into the shell up to a pressure pmax, then, in the case of a subsequent unchanged amount of gas, the internal

volume of the shell becomes larger in view of the increase in the deformations e22 and e11 on the descending branch of the process being
investigated which, in its turn, leads to a reduction in the pressure within the shell.

3. Simplifications of the non-linear equations of the theory of momentless shells in the case of small deformations

In the case of small tensile deformations, when �i � 1, 1 + �i ≈ 1, for shells which are in a momentless state, the approximate equalities

(3.1)

hold for any shear deformations sin �12, since only the deformations �i appear in relation (2.10), unlike the three-dimensional case. In this
case, the following formulae and equalities hold

(3.2)

with an accuracy 1 + �i ≈ 1.
However, the formulae (henceforth, as in Section 2, summation from 1 to 2 is carried out over a repeated index s or k) which are obtained

from relations (2.17) and (2.23) with the same degree of accuracy

(3.3)

only hold when i /= j, that is, for S∗
12, S∗

21, P∗
12, P∗

21 since, when

(3.4)

by virtue of the absolutely rigorous equalities �i = eii from the relations

the approximate equalities

follow with an accuracy of 1 + εi ≈ 1, on substituting relations (2.13) and (2.22).
On account of what has been stated above, it is necessary relations (3.3), which hold when i /= j in the case when �i � 1, to supplement

with the simplified relations

(3.5)

Relations (3.3) and (3.5) are energetically completely matched with the consistent kinematic relations3

(3.6)

since, when they are used for the variation in the strain potential energy of a shell, we arrive at the expression

(3.7)

The forces Ssk, Si3 are found using formulae (3.3) (when i /= j) and (3.5).
It is necessary to emphasize that, if only “dead” contour forces Qik act on the shell, then all the above relations and the equilibrium Eq.

(2.25) in which X∗
1 = X∗

3 = 0 and S∗
ij

≈ Sij, S∗
i3 ≈ Si3 hold for arbitrary shear deformations sin �12. When X* /= 0, however, the approximate

equality X* ≈ X only holds under the conditions that

(3.8)
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At the same time, when a “dead” surface load acts on the shell,

(3.9)

and, in the case of the action of a “following” surface load with specified components Y1, Y2, Y3 in projections onto the directions of the
unit vectors l∗i and m* on �*,

(3.10)

When equalities (3.4) are satisfied by virtue of the fact that �i = eii, expressions (2.4) and (2.27), which serve to define these vectors, reduce
to the equalities

(3.11)

Hence, on introducing constraints (3.8), putting

(3.12)

it is necessary to represent expressions (2.4) and (2.27) in the following simplified form

(3.13)

which enables as, when equalities (3.4) are satisfied, to take the limit to equalities (3.11) which leads, in accordance with the representations
X = Yil

∗
i + Y3m∗, to relations (3.10).

By analogy with expressions (3.13), when constraints (3.8) are introduced, it is also necessary to simplify expressions (2.34). In the
special case, when equalities (3.4) are satisfied, the equalities

(3.14)

follow from expressions (2.34) when relations (2.35) and (2.28) are taken into account.
In the case of constraints (3.8), the approximate relations

(3.15)

which follow from relations (2.34) when the following constraints are introduced

(3.16)

also reduce to these equalities.
Now, using approximate equalities (3.13) and (3.15) for P∗

i ≈ Pi, we obtain the representations

where

(3.17)

It earlier seen that the above relations also follow from relations (2.36) when constraints (3.16) and (3.8) are introduced.
In concluding this section for the case of small deformations, we consider the variational equation of the principle of possible dis-

placements, constructed earlier (Ref.,3 formula (1.18)) in which the components of the surface and contour loads are determined using the
formulae presented above, depending on their types. After standard reductions, this equation takes the form

(3.18)

whence follow the previously constituted3 equilibrium equations and static boundary conditions on the contour lines xi = xi−, xi = xi+,
which are obtained from relations (2.25) by discarding the asterisks on all of the internal and external forces.
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For small deformations of a shell made of an elastic orthotropic material, it is permissible to relate the stresses �11, �22, �12 to the
deformations �1, �2, sin �12 by means of the standard generalized Hooke’s law relations

(3.19)

if the directions of orthotropy coincide with the lines of principal curvatures in the middle surface �. When they are used for the forces Tij,
we arrive at the elasticity relations

(3.20)

where Bii = tẼi are the extension-compression stiffnesses and B12 = tG12 is the shear stiffness.
Note that relations (3.19) and (3.20), which have been formulated for a linear elastic material, also hold in the case of finite deformations

if the thickness t is replaced by t* = t(1 + �3). However, the answer to the question whether it is possible to use these relations to solve specific
problems cannot be unambiguous in all cases since, instead of (3.19), Hooke’s law can also be formulated for the generalized components
of the stresses in the form

(3.21)

if they correspond more to the experimental results. On account of what has been said, relations (3.19) and (3.20), as is assumed for
the absolute majority of materials, can only be used within the limits of small elastic deformations when the equalities �∗

ik
≈ �ik are

approximately satisfied.

4. The equations of the neutral equilibrium and perturbed motion of momentless shells in the case of small deformations

We will now consider two equilibrium states of a shell. Suppose the first of them, which is unperturbed, is characterized by internal
forces T0

11, T0
22, T0

12 = T0
21, external surface forces X0

1 , X0
2 , X0

3 which are applied to the middle surface �, and linear forces P0
ik

, P0
i3, applied

to the contour lines xi = xi−, xi = xi+. Making the standard assumption that the shell is stressed but not deformed in the first state, by
linearising the non-linear equations formulated in the preceding section in the neighbourhood of the unperturbed state and retaining the
earlier notation for the increments in the parameters of the stress-strain state and the external forces of the perturbed state, we arrive at
the following system of linearized neutral equilibrium equations

(4.1)

where

(4.2)

and, in unlike relations (3.22),

(4.3)

Eq. (4.1) have been formulated earlier3 for Xi = 0, X3 = 0 and correspond to the action of surface forces of constant direction. In them, it is
necessary to take

(4.4)

in the case of the action of “following” surface loads Y0
i

and Y0
3 .

In the case of Eq. (4.1), which have been set up on the contour lines xi = xi−, xi = xi+, boundary conditions of the form

(4.5)

are formulated in which Pi� = 0 in the case of the action of “dead” contour forces Q 0
ik

. Under the action of “following” contour forces of the
first type Q 0

11, Q 0
22, Q 0

12, Q 0
21

(4.6)

and, under the action of following forces of the second type
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When non-conservative forces act on the shell, instead of the equation

(4.7)

(the forces Ssk and Ss3 are defined by formulae (4.2)) it is necessary to use the variational equation (	 is the density of the shell material)

(4.8)

from which, instead of the neutral equilibrium equations (4.1), we obtain equations of the perturbed motion of the form

(4.9)

5. Conclusion

The resolvents of the geometrically non-linear theory of elasticity and momentless shells, formulated for the case of small deformations
using the proposed consistent relations, differ from the analogous equations formulated using the classical relations given in the literature
when a number of non-linear terms, which are extremely small compared with the other terms, are not present. When they are discarded in
the equations of the classical non-linear theory of elasticity, very small perturbations are introduced which, as a number of investigations
carried out on the numerical solution of the number of problems on the geometrically non-linear deformation and stability of straight
beams have shown, under certain forms of loading lead to considerable perturbations (more than 20%) in the solutions determining both
the parameters of the subcritical stress-strain state as well as the values of the critical loads in the direction of understating them. The
results of such investigations are in complete agreement with the determination of the stability of mechanical systems. They have been
partially reflected earlier.11
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